Phrase Pair Mappings for Hindi-English Statistical Machine Translation

نویسندگان

  • Sreelekha S
  • Pushpak Bhattacharyya
چکیده

In this paper, we present our work on the creation of lexical resources for the Machine Translation between English and Hindi. We describes the development of phrase pair mappings for our experiments and the comparative performance evaluation between different trained models on top of the baseline Statistical Machine Translation system. We focused on augmenting the parallel corpus with more vocabulary as well as with various inflected forms by exploring different ways. We have augmented the training corpus with various lexical resources such as lexical words, synset words, function words and verb phrases. We have described the case studies, automatic and subjective evaluations, detailed error analysis for both the English to Hindi and Hindi to English machine translation systems. We further analyzed that, there is an incremental growth in the quality of machine translation with the usage of various lexical resources. Thus lexical resources do help uplift the translation quality of resource poor langugaes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Machine Transliteration as a Phrase Based Statistical Machine Translation Problem

In this paper we use the popular phrasebased SMT techniques for the task of machine transliteration, for English-Hindi language pair. Minimum error rate training has been used to learn the model weights. We have achieved an accuracy of 46.3% on the test set. Our results show these techniques can be successfully used for the task of machine transliteration.

متن کامل

Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation

Bilingual termbanks are important for many natural language processing (NLP) applications, especially in translation workflows in industrial settings. In this paper, we apply a log-likelihood comparison method to extract monolingual terminology from the source and target sides of a parallel corpus. Then, using a Phrase-Based Statistical Machine Translation model, we create a bilingual terminolo...

متن کامل

A Hybrid Approach Using Phrases and Rules for Hindi to English Machine Translation

The present work focuses on developing a hybrid approach for developing a machine translation (MT) scheme for automatic translation of Hindi sentences to English. Development of machine translation (MT) systems for Indian languages to English almost invariably suffers from the limited availability of linguistic resources. As a consequence, statistical, rule-based or example-based approaches hav...

متن کامل

Improving Machine Translation via Triangulation and Transliteration

In this paper we improve Urdu→Hindi English machine translation through triangulation and transliteration. First we built an Urdu→Hindi SMT system by inducing triangulated and transliterated phrase-tables from Urdu–English and Hindi–English phrase translation models. We then use it to translate the Urdu part of the Urdu-English parallel data into Hindi, thus creating an artificial Hindi-English...

متن کامل

A Framework for Managing Verb Phrase Effective and Easy English-Hindi Machine Translation

Automatic Machine Translations from one to another language have been the subject of great attention of computational linguistics for many years. In EnglishHindi Machine Translation, verb tuning is a vital operation. Present paper is an approach to describe easy English-Hindi verb phrase mapping. This work results satisfactory in Machine Translation over type of English sentences. It is observe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.02100  شماره 

صفحات  -

تاریخ انتشار 2017